Abstract

In this study, a bi-objective optimization problem for a supply chain with different transportation modes is addressed. The first objective function is minimizing costs imposed by production, batching, due date assignment and transportation. The second one is minimizing inventory and tardiness costs. Also, a heuristic rule is developed to choose non-dominated transportation modes. Three metaheuristic algorithms including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm (NSGA-II) and hybrid NSGA-II (HNSGA-II) are customized to solve the problem. In addition, a theoretical improvement in the non-dominated sorting procedure called improved efficient non-dominated sorting (IENS) is proposed. Computational tests are used for comparing and evaluating the proposed methods and algorithms. The results show that IENS reduces running time compared to the modern method of non-dominated sorting, the efficient non-dominated sorting method, and this reduction is statistically significant. Also, the HNSGA-II has an average but robust performance compared to the other two algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.