Abstract

Engineering tools and mathematical optimization are applied in this study to plan the work of the agents of the cow artificial insemination service (inseminator) in Israel. Time is crucial in insemination as the chances of conception decline with increasing delay between the start of estrus and insemination. About 1,090 artificial inseminations of cows are performed daily in Israel. They involve 412 farms in 283 villages, and are performed by 29 inseminators; the work plan should balance the work load among the inseminators. To this end, the working time of an inseminator in each village is required. Thus, a model to predict the working time in a village was developed. Subsequently, a mathematical optimization model was designed and solved, which aims to allocate customers to trips and to determine the itinerary of each trip to minimize total distance/time. The main benefits included a 21.4% reduction in total traveling time and a 55% reduction in the difference between the lengths of the longest and shortest working days. Moreover, the longest delay in reaching an estrous cow is reduced from 7.6 to 5.9h (i.e., by 1.7h), which may increase the conception ratio by some 7%. In addition, the trade-off between work balance and total traveling time was studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.