Abstract

Laser sources are under increasing study for in vivo tumour ablation. Photo-thermal ablation in tissues varies tremendously in governing physical phenomena, depending on wavelength, owing to wide variation in the optical properties of tissues, specifically the dominant chromophore and degree and type of scattering. Once converted into local tissue heating, however, the governing thermodynamic principles remain the same. Observed irreversible thermal alterations range from substantial structural disruption due to steam evolution in high temperature short-term activations to low temperature rise, longer-term initiation of the complex protein cascades that result in apoptosis and/or necroptosis. The usual mathematical model in hyperthermia studies, the thermal isoeffect dose, arising from the relative reaction rate formulation, is not an effective description of the higher temperature effects because multiple processes occur in parallel. The Arrhenius formulation based on the theory of absolute reaction rates is much more useful and descriptive in laser heating since the multiple thermodynamically independent processes may be studied separately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.