Abstract

There exist various approaches to the mathematical modelling of dynamic processes occurring in shop floor logistics. These include methods from queuing theory or use dynamical systems given by ordinary or partial differential equations (fluid models). If the number of elements within the process is large it can become prohibitively complex to analyse and optimize a given logistic process or the corresponding mathematical model using global strategies. A new approach is to provide for an autonomy of various smaller entities within the logistic network, i.e. for the possibility of certain elements to make their own decisions. This necessitates changes in the appropriate mathematical models and opens the question of stability of the systems that are designed. In this paper we discuss the fundamental concepts of autonomy within a logistic network and mathematical tools that can be used to model this property. Some remarks concerning the stability properties of the models are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.