Abstract

Abstract A boundary element mathematical model was used to assess the influence of cathodic protection (CP) design parameters on performance of a parallel-ribbon sacrificial anode CP system for coated pipelines. The model accounted for current and potential distributions associated with discrete holidays on coated pipelines that expose bare steel to the environment. Case studies, based on the CP system used to provide protection to the Trans-Alaska pipeline, were selected to show conditions under which a given CP system will and will not protect a pipe. In the cases studied, Mg ribbons provided adequate protection in 50 kΩ-cm soil, but almost no additional protection was achieved by retrofitting Mg anodes to a CP system using Zn ribbons if the Zn ribbons remained connected to the pipe. The model also was used to show the lack of sensitivity of aboveground on-potential surveys to localized corrosion on the buried pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.