Abstract
Most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam, although strain distribution is non-uniform along the length of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain in a beam cannot be measured with long gage optic sensors; the safety of a steel beam is analyzed by a comparison between the maximum stress measured during monitoring and the allowable stress of the beam calculated by a design code. Therefore, in this paper, simple mathematical models are presented for the determination of the maximum values of strains or stresses in a beam based on the average strains measured by long gage optic sensors. The model was tested in an experiment by comparing the maximum strain directly obtained from electrical gages and the calculated maximum strain from long gage optic sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.