Abstract

Cancer is a major public health problem worldwide and finding a total cure or eradication of the disease has been the expectations of medical researchers and medical practitioners in the recent times. In this paper, invasion of normal cells by carcinogens is considered. The purpose of the research is to study the dynamic evolutions of cancer and immune cells with the view finding most effective strategic way to control or eradicate cancer growth in human beings. We proposed five growths and mitigate models for benign and malignant cancer which are coupled ordinary differential equations and partial differential equations and Numerical simulations are made for the models. Analytic and Numerical solutions and sensitivity analysis of the models to parameters are obtained. It is found that the benign and malignant cancer cells displayed out of control growth and hence unstable in nature and the immune cells depreciated to the point of immune collapse. By the use of energy function it is established that staving of cancer cells of oxygen or use of drugs are strategic ways of combating cancer disease. Moreover, if the cancer cells are starved of basic nutrients or some basic enzymes inhibited it is expected that similar effect can also be achieved. The starvation of cancer cells should focus on oxygen, nutrients and vital enzymes. However, it is hoped that drugs developers and bioengineers will come up with means to achieve the starvation strategies to combat cancer disease.

Highlights

  • We proposed five growths and mitigate models for benign and malignant cancer which are coupled ordinary differential equations and partial differential equations and Numerical simulations are made for the models

  • If the cancer cells are starved of basic nutrients or some basic enzymes inhibited it is expected that similar effect can be achieved

  • In this paper five models are considered to study the dynamic evolution of tumour and cancer cells in the presence of immune cells

Read more

Summary

Introduction

Cancer is a major public health problem and worldwide there were 14.1 million. Cancer of the colon and rectum, breast, bladder, stomach, oral cavity, pharynx and the non-Hodgkin lymphoma are major killers ([1] [3]). Finding a total cure or eradication of cancer disease has been the focal point of most medical researches and the expectations of medical practitioners in the recent times. The dynamic behaviour of cancer cells is complex and stochastic in nature. Combating the disease will require thorough understanding of the formation of cancer and the spread of disease in the blood circulation and lymph systems

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call