Abstract
In this study, the sound absorption characteristics of hexagonal close-packed and face-centered cubic lattices were estimated by theoretical analysis. Propagation constants and characteristic impedances were obtained by dividing each structure into elements perpendicular to the incident direction of sound waves and by approximating each element to a clearance between two parallel planes. Consequently, the propagation constant and the characteristic impedance were treated as a one-dimensional transfer matrix in the propagation of sound waves, and the normal incident sound absorption coefficient was calculated by the transfer matrix method. The theoretical value of the sound absorption coefficient was derived by using the effective density applied to the measured tortuosity. As a result, the theoretical value was becoming closer to the measured value. Therefore, the measured tortuosity is reasonable.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.