Abstract

AbstractThe purpose of this study is to evaluate both the temperature and the initial moisture content of the material in mathematical models of drying. For this, empirical lumped parameter models were fitted based on experimental data of moisture over time. Furthermore, a new semi‐empirical drying kinetics model was applied. This model was developed using the generalization of arbitrary order of the Lewis equation obtained through the Laplace transform. After performing the fit, the fractional order model for drying wheat seeds as a temperature function was generalized. Distributed parameter models were also fitted to evaluate the influence of initial moisture content on drying kinetics and to estimate the moisture profile along the position inside the seed. It was verified that the fractional order model presented statistical results similar to models with a higher number of constants, being used to generalize the kinetic drying model for the three wheat cultivars. Generalized models showed better fits for the 3 cultivars with first‐degree function, and the maximum global deviation was 10%, 15%, and 20% for the cultivars BRS–Atobá, BRS–Jacana, and BRS–Sanhaço, respectively. In addition, the distribution of moisture content inside the seed was verified by the distributed parameter model, which predicted the experimental data with an overall deviation of around 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call