Abstract

A three-dimensional mathematical model for the molten steel flow during the RH refining process has been applied to the circulatory flow processes in both a practical RH degasser and its water model unit. The model was presented earlier [1] and one of its characteristics is that ladle, snorkels and vacuum vessel are regarded as a whole. Using this model, the fluid flow field and the gas holdups of liquid phases and others have been computed respectively for a 90 t RH degasser and its water model unit with a 1/5 linear scale. The results show that the mathematical model can properly describe the flow pattern of molten steel during the refining process in an RH degasser. Except in the area close to the liquid's free surface and in the zone between the two snorkels in the ladle, a strong mixing of the molten steel occurs, especially in the vacuum vessel. However, there is a boundary layer between the descending liquid stream from the down-snorkel and its surrounding liquid, which is a typical liquid-liquid two-phase flow, and the molten steel in the ladle is not in a perfect mixing state. The lifting gas blown is ascending mostly near the up-snorkel wall, which is more obvious under the conditions of a practical RH degasser, and the flow pattern of the bubbles and molten steel in the up-snorkel is closer to an annular flow. The calculated circulation rates for the water model unit at different lifting gas rates are in good agreement with experimentally determined values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.