Abstract

The aim of this article is to study a problem of thermomechanical deformation in a homogeneous, isotropic, micropolar thermoelastic half-space based on the Moore–Gibson–Thompson heat equation under the influence of nonlocal and hyperbolic two-temperature (HTT) parameters. The problem is formulated for the considered model by reducing the governing equations into 2D and then converting to dimensionless form. Laplace transform and Fourier transform techniques are employed to obtain the system of differential equations. In the transformed domain, the physical quantities like displacement components, stresses, thermodynamic temperature, and conductive temperature are calculated under the specific types of normal force and thermal source at the boundary surface. A numerical inversion technique is used to recuperate the equations in the physical domain to exhibit the influence of nonlocal and HTT in the form of graphs. Particular cases of interest are also discussed in the present problem. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call