Abstract

This article investigate the impact of magnetohydrodynamic nanofluid past a stretching cylinder with chemical reactive species. The momentum, energy and concentration equations are represented by a set of partial differential equations which are moulded into a system of ordinary differential equations using mathematical modelling of the physical problem. After adopting the Runge Kutta Fehlberg approach, the moulded equations are solved using the shooting procedure. To study the effects of various fluid parameters, a parametric analysis was performed. Brownian motion and thermophoresis were investigated in the appealing pattern. The effects of important fluid characteristics, such as outer velocity, chemical reaction, thermophoresis, Lewis number, Brownian motion on concentration, temperature, and velocity have been investigated and shown in graphically and tabulated forms. The core findings of this work is that concentration of the nanofluid decreasing with more reacting species and rate of heat transfer is significantly controlled by outer velocity parameter and magnetic parameter which is very useful in manufacturing processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call