Abstract

Differential and macroscopic models of argon–steel flows in ladle shroud have been developed. In this, argon–steel, two-phase flow phenomena have been formulated via a transient, three dimensional, turbulent flow model, based on the volume of fluid (VOF) calculation procedure. While realizable k–e turbulence model has been applied to map turbulence, commercial, CFD software ANSYS-Fluent™ (Version 18), has been applied to carry out numerical calculations. Predictions from the model have been directly assessed against experimental measurements across the range of shroud dimensions and volumetric flow rates typically practiced in the industry. It is demonstrated that the two-phase turbulent flow model captures the general features of gas–liquid flows in ladle shroud providing estimates of free jet length and threshold gas flow rates (required to halt air ingression) which are in agreement with corresponding experimental measurements. In the absence of differential solutions, a macroscopic model has been worked out through dimensional analysis embodying multiple non-linear regression. It is shown that dimensionless free jet length in bloom and slab casting shrouds can be estimated reasonably accurately from the following correlation (in SI unit), viz., $$ \frac{{L_{{{\text{jet}}}} }}{{D_{{{\text{CN}}}} }} = 2.8 \times 10^{{ - 2}} \left( {\frac{{Q_{{\text{G}}} }}{{Q_{{\text{L}}} }}} \right)^{{1.14}} \left( {\frac{{gD_{{{\text{CN}}}}^{5} }}{{Q_{{\text{L}}}^{2} }}} \right)^{{0.8}} \left( {\frac{{\sigma D_{{{\text{CN}}}}^{3} }}{{\rho _{{\text{L}}} Q_{{\text{L}}}^{2} }}} \right)^{{ - 0.9}} \left( {\frac{{D_{{{\text{sh}}}} }}{{D_{{{\text{CN}}}} }}} \right)^{{2.0}} \left( {\frac{{\rho _{{\text{G}}} }}{{\rho _{{\text{L}}} }}} \right)^{{ - 0.30}} $$ in which, Ljet is the free liquid jet length (m), QG is the gas flow rate (m3/s), QL is the liquid flow rate (m3/s), Dsh is shroud diameter (m), DCN is the collector nozzle diameter (m), σ is the interfacial tension (N/m), and ρG as well as ρL are respectively density of gas and liquid (kg/m3). It is demonstrated that the proposed correlation is consistent with the laws of physical modeling and leads to estimates that are in good agreement with predictions from the differential models, for both air-water as well as argon–steel systems. Numerical simulations as well as macroscopic modeling have indicated that thermo-physical properties of the gas–liquid system are important and exert some influences on the gas–liquid, two-phase, flow in ladle shrouds, albeit not to a large extent. Despite dissimilar thermo-physical properties, full scale water modeling appears to be sufficiently predictive and provides reasonable macroscopic descriptions of the two-phase flow phenomena in industrial ladle shroud systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.