Abstract

A three-dimensional mathematical model of flow and heat/mass transfer coupling with chemical reactions for fuel gas and droplet combustion during reactive spraying deposition technology (RSDT) is presented in this paper. The RNG k- ε model is employed in the numerical simulation of turbulent combustion gas flow. The droplet particle is tracked and analyzed in a Lagrangian frame. The heating and vaporization histories of the injected droplet are also calculated during its movement. The three-dimensional distributions of velocity, species concentration and temperature are numerically obtained. The results indicate that the droplet will disappear over a very short distance and the vaporized fuel gas will burn immediately. Both the methods and the results described in this paper will help in the control of the final catalyst particle size and the optimization of the microstructure of the catalyst layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.