Abstract

In this article, a mathematical model is developed to evaluate the influence of strain hardening on energy absorption and mean crushing load of thin-walled grooved conical tubes. For this purpose, the tubes are shaped with the inner and the outer grooves at different positions along the axis. These grooves facilitate the creating of uniform plastic hinges, and controlling the mode of collapse. The effects of various geometric parameters such as groove distances, groove depth and half apex angle of conical on the collapse response, energy absorption and mean crushing load are investigated. In this analytical model, the variation of circumferential strain and the strain hardening during formation of a fold has been taken into account. In order to verify these analytical results, quasi-static compression tests are performed. The results of this research indicate good agreement between the analytical model and the experimental findings for grooved conical tubes as an energy absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.