Abstract

A defining feature of cancer is the capability to spread locally into the surrounding tissue, with cancer cells spreading beyond any normal boundaries. Cancer invasion is a complex phenomenon involving many inter-connected processes at different spatial and temporal scales. A key component of invasion is the ability of cancer cells to alter and degrade the extracellular matrix through the secretion of matrix-degrading enzymes. Combined with excessive cell proliferation and cell migration (individual and collective), this facilitates the spread of cancer cells into the local tissue. Along with tumour-induced angiogenesis, invasion is a critical component of metastatic spread, ultimately leading to the formation of secondary tumours in other parts of the host body. In this paper we present an overview of the various mathematical models and different modelling techniques and approaches that have been developed over the past 25 years or so and which focus on various aspects of the invasive process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call