Abstract

AbstractMicrotopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near‐surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call