Abstract

A magnetic refrigeration system has the potential to alternate the compression system with respect to environmental compatibility. Refrigeration systems currently operate on the basis of the expansion and compression processes, while active magnetic refrigeration systems operate based on the magnetocaloric effect. In this study, a single layer of Gd was used as the magnetocaloric material for six-packed-sphere regenerators. A one-dimensional numerical model was utilized to simulate the magnetic refrigeration system and determine the optimum parameters. The optimum mass flow rate and maximum cooling capacity at frequency of 4 Hz are 3 L·min−1 and 580 W, respectively. The results show that the maximum pressure drop increased by 1400 W at a frequency of 4 Hz and mass flow rate of 5 L·min−1. In this study, we consider the refrigeration system in terms of the design considerations, conduct a parametric study, and determine the effect of various parameters on the performance of the system.

Highlights

  • Refrigeration systems are used in many areas, including domestic cooling systems, vehicles cooling systems, food storage cabinets, and hydrogen gas liquefaction

  • The efficiency of the magnetic refrigeration system is about 30–60% of the Carnot cycle, while the compression efficiency is between 5% and 10% of the Carnot cycle [2]

  • The results showed that for the flat plate regenerator, the coefficient of performance (COP) of the active magnetic regenerator (AMR) cycle is higher than that of the vapor compression plant only in the high-mass-flow-rate range

Read more

Summary

Introduction

Refrigeration systems are used in many areas, including domestic cooling systems, vehicles cooling systems, food storage cabinets, and hydrogen gas liquefaction. One of the most important issues that should be considered in the design of refrigeration systems is the ability to adapt to the environment. Extensive research has been performed on the use of various types of natural refrigerants such as ammonia (R717) and carbon dioxide (R744) in compressed air systems; these refrigerants have some drawbacks. Is there a shortage of components in small scale ammonia systems, but ammonia has a pungent smell, and is both flammable and toxic. Carbon dioxide contributes significantly to global warming and it is not compatible with all refrigeration system lubricants [1]. Despite the widespread use of these natural systems, issues such as the possibility of flammability and toxicity are serious barriers to the use of compressed air systems in different parts of industry

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.