Abstract

IntroductionEngland and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether.MethodsA compartmental deterministic model was used to estimate parameters governing transmission of infection and competition between different groups of pneumococcal serotypes prior to the introduction of PCV13. The best-fitting parameters were used in an individual based model to describe pneumococcal transmission dynamics and effects of various options for the vaccination programme change in England and Wales. A number of scenarios were conducted using (i) different assumptions about the number of invasive pneumococcal disease cases adjusted for the increasing trend in disease incidence prior to PCV7 introduction in England and Wales, and (ii) a range of values representing serotype replacement induced by vaccination of the additional six serotypes in PCV13.ResultsMost of the scenarios considered suggest that ceasing pneumococcal conjugate vaccine use would cause an increase in invasive pneumococcal disease incidence, while replacing PCV7 with PCV13 would cause an overall decrease. However, the size of this reduction largely depends on the level of competition induced by the additional serotypes in PCV13. The model estimates that over 20 years of PCV13 vaccination, around 5000–62000 IPD cases could be prevented compared to stopping pneumococcal conjugate vaccination altogether.ConclusionDespite inevitable uncertainty around serotype replacement effects following introduction of PCV13, the model suggests a reduction in overall invasive pneumococcal disease incidence in all cases. Our results provide useful evidence on the benefits of PCV13 to countries replacing or considering replacing PCV7 with PCV13, as well as data that can be used to evaluate the cost-effectiveness of such a switch.

Highlights

  • England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether

  • It is important to understand the likely range of possible short-term effects of PCV13 on disease caused by different serotypes against a backdrop of serotype replacement following PCV7 introduction, as well as its longer term effect on overall invasive pneumococcal diseases (IPD) incidence

  • A reduction in the number of IPD cases due to VT2 serotypes is predicted if PCV13 is introduced from April 2010, eventually leading to elimination of both VT1 and VT2 serotypes, even though there is no immediate reduction in VT2 IPD cases among unvaccinated individuals in the first few years due to ongoing replacement effects from PCV7 in the population

Read more

Summary

Introduction

England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether. PCV7 provides protection against 7 serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) among more than 90 pneumococcal serotypes identified so far It was introduced into the UK routine childhood immunisation programme in September 2006 for infants at 2, 4 and 13 months with a catch up to children under two years of age. An updated analysis using a transmission dynamic model incorporating IPD data from the first three years of the PCV7 programme in England and Wales predicted that in the longer term the reduction in VT IPD due to PCV7 would be largely (though not fully) negated by serotype replacement [4]. In April, 2010, Prevnar 13TM (PCV13) covering extra six serotypes (1, 3, 5, 6A, 7F and 19A) replaced PCV7 in the UK (with no catch-up), sales of PCV7 in the United Kingdom (UK) having been discontinued Those infants with an incomplete schedule with PCV7 received the remaining doses with PCV13. It is important to understand the likely range of possible short-term effects of PCV13 on disease caused by different serotypes against a backdrop of serotype replacement following PCV7 introduction, as well as its longer term effect on overall IPD incidence

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call