Abstract

The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as “A Human Inflammation Model for Cancer Development“. This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model.Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.

Highlights

  • The classic chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) include essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF), which are acquired stem cell neoplasms [1]

  • In patients with MPNs, these processes are exemplified by the advanced myelofibrosis stage [4, 29], which might be considered to develop as the consequence of chronic inflammation in the bone marrow–“the inflamed bone marrow” and “the wound that won’t heal” [4, 29,107,108]

  • We for the first time use mathematical modelling to substantiate the concept that MPN progression is facilitated by chronic inflammation and that ET and PV are linked through increasing JAK2V617F allele burden [19] which is destined to happen as time increases without interference

Read more

Summary

Introduction

The classic chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) include essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF), which are acquired stem cell neoplasms [1]. We discuss the perspectives of our findings, which might implicate intervention at the earliest stage of cancer development (ET, PV) to target the malignant clone and dampen concomitant inflammation when the tumor burden is minimal, and the outcome of treatment is logically most favorable

Methods
Discussion
93. De Pillis LG and Radunskaya A
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call