Abstract

Abstract: Providing a robotic system with dexterous skills and autonomous capabilities is a key challenge in the field of humanoid robotics, particularly in areas such as industrial manufacturing, prosthetics, and orthopaedic rehabilitation. Providing such a system would be extremely useful in these areas. In order for its functionality to be fully realised, a multifingered robotic hand calls on a significantly higher level of actuation and transmission systems. Under actuation techniques provide the impression of being a workable solution for achieving high degrees of dexterity in robotic hands without the need for more complex mechanical design. One of the most defining characteristics of an under-actuated robotic hand is that the needed number of actuators to control the hand is fewer in number than the degree of freedom that the hand possesses. When compared to a fully actuated version of the same hand, an identical hand with under actuation offers a considerable reduction in the complexity of the control system and a large cost savings. The current study proposes the design and kinematic analysis of an anthropomorphic five-finger robotic hand. Four of the fingers and the thumb are under-actuated, and the hand has twenty-one degrees of freedom and twelve degrees of actuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call