Abstract

This study develops new solution methodologies for the flexible job shop scheduling problem (F-JSSP). As a first step towards dealing with this complex problem, mathematical modellings have been used; two novel effective position- and sequence-based mixed integer linear programming (MILP) models have been developed to fully characterise operations of the shop floor. The developed MILP models are capable of solving both partially and totally F-JSSPs. Size complexities, solution effectiveness and computational efficiencies of the developed MILPs are numerically explored and comprehensively compared vis-à-vis the makespan optimisation criterion. The acquired results demonstrate that the proposed MILPs, by virtue of its structural efficiencies, outperform the state-of-the-art MILPs in literature. The F-JSSP is strongly NP-hard; hence, it renders even the developed enhanced MILPs inefficient in generating schedules with the desired quality for industrial scale problems. Thus, a meta-heuristic that is a hybrid of Artificial Immune and Simulated Annealing (AISA) Algorithms has been proposed and developed for larger instances of the F-JSSP. Optimality gap is measured through comparison of AISA’s suboptimal solutions with its MILP exact optimal counterparts obtained for small- to medium-size benchmarks of F-JSSP. The AISA’s results were examined further by comparing them with seven of the best-performing meta-heuristics applied to the same benchmark. The performed comparative analysis demonstrated the superiority of the developed AISA algorithm. An industrial problem in a mould- and die-making shop was used for verification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call