Abstract

Grape skin (Kyoho: Vitis labruscana), a by-product of processed grapes, was experimentally investigated for its drying behavior at different drying temperatures with five thin layer drying models. Moreover, we determined the effect of drying temperature on the bioactive capacity of Kyoho skin. The experimental moisture ratio decreased with increasing drying temperature. The drying process was predicted by mathematical models, such as Page (303.15 K: R2 = 0.9815, 333.15 K: R2 = 0.9685) and two-term (313.15 K: R2 = 0.9639, 323.15 K: R2 = 0.9737) models. Moisture diffusivity (Deff) ranged from 2.87 × 10−8 to 9.82 × 10−8 m2/s, with an activation energy (Ea) of 33.78 ± 1.06 kJ/mol. Total phenolic compounds (0.37 ± 0.04 to 0.23 ± 0.03 mg GAE/g) and antioxidant activities (DPPH• activity of 93.06 to 73.31%) of Kyoho skin were significantly affected by drying temperature. Thus, this study concluded that the drying process decreased the bioactive potential of grape skin; therefore, we recommend that the food processing industry needs to consider drying variables during the processing of grape skin-based value-added products for improved food production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.