Abstract

In this work, the mathematical modeling of the facilitated transport of germanium (non-dispersive extraction) through a flat sheet membrane with an Aliquat 336 carrier was described. The flat sheet supported liquid membrane (FSSLM) experiments were performed under conditions germanium ≈ 100 mg/L, tartaric acid concentration of 2.76 mmol/L, and carrier concentrations of 2.5-10%v/v. The extraction equilibrium, mass transfer, and diffusion equations based on Fick's law were the principles of modeling. Modeling was carried out by programming in Matlab mathematical software to obtain the extraction (Kex) and mass transfer constants (Km) as the objective parameters. According to the model resolution, Kex and Km were found to be 0.178 and 9.25 × 10-2 cm/s, respectively. The correlation coefficients between model and experimental data relating to the Aliquat 336 concentrations of 2.5, 5, 7.5, and 10%v/v were found as 0.96, 0.98, 0.99, and 0.92. The parameters of root mean square error, bias, and scatter index showed the model accuracy. In addition, diffusion coefficients relating to Aliquat 336 concentrations of 2.5, 5, 7.5, and 10%v/v were calculated using mass transfer coefficients to be 2.4 × 10-4, 2.23 × 10-4, 1.91 × 10-4, and 1.79 × 10-4 cm2/s, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.