Abstract

We study a fractional reaction–diffusion system with two types of variables: activator and inhibitor. The interactions between components are modeled by cubical nonlinearity. Linearization of the system around the homogeneous state provides information about the stability of the solutions which is quite different from linear stability analysis of the regular system with integer derivatives. It is shown that by combining the fractional derivatives index with the ratio of characteristic times, it is possible to find the marginal value of the index where the oscillatory instability arises. The increase of the value of fractional derivative index leads to the time periodic solutions. The domains of existing periodic solutions for different parameters of the problem are obtained. A computer simulation of the corresponding nonlinear fractional ordinary differential equations is presented. For the fractional reaction–diffusion systems it is established that there exists a set of stable spatio-temporal structures of the one-dimensional system under the Neumann and periodic boundary conditions. The characteristic features of these solutions consist of the transformation of the steady-state dissipative structures to homogeneous oscillations or space temporary structures at a certain value of fractional index and the ratio of characteristic times of system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.