Abstract
Twisted waveguides are part of waveguide paths of antenna- feeder devices of spacecraft. They have high requirements for accuracy and reliability. They are made of profiled rectangular pipes. The twisting of waveguide pipes with a cross- sectional size of less than 11x5.5 mm is carried out in the device using a rigid calibration mandrel. The calculation method determined the main parameters of the technological process of twisting the waveguide tube (torque M, drawing force Pпр). When twisting workpieces with cross sections according to GOST, the torques (M) and drawing forces (Pпр) from the cross- section sizes vary according to a nonlinear relationship. Twisting the workpiece from M4 requires less torque (M) and drawing force (Pпр) than for the workpiece from M1. By mathematical modeling, it is possible to select the optimal technological mode in advance, thereby ensuring high quality of waveguide twisting manufacturing. To substantiate the calculation results, the methods of control of technological parameters and quality control of the product manufacturing were considered. A problem has been found in measuring the torque and pulling force when twisting the workpiece. Therefore, the pulling force should be measured from the machine. A method for measuring torque using a non- contact torque sensor is proposed. The manufacturing quality is supposed to be carried out by the STRESSVISION mechanical stress scanner, and electrical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.