Abstract

Background and aimsBone turnover is strongly affected by pH of surrounding fluid, and in turn plays a role in maintaining systemic pH, however the quantitative contribution of bone processes to pH regulation is not known. Our goal was to develop a mathematical model describing pH regulation in the interstitial fluid and to examine the contribution of hydroxyapatite dissolution and precipitation to pH regulation. Materials and methodsWe modeled twelve reversible equilibrium reactions of sixteen calcium, phosphate, hydrogen and carbonate species in the interstitial fluid and examined the buffering capacity and range. The effect of hydroxyapatite dissolution and precipitation was modeled by assuming that the calcium, phosphate and hydroxide contained in the bone volume adjacent to the interstitial fluid is instantaneously added to or removed from the interstitial fluid. ResultsThe carbonate buffer was found to dominate electrochemical buffering system of the bone interstitial fluid. Nevertheless, the phosphate added during dissolution of bone hydroxyapatite significantly improved the interstitial fluid buffering capacity. In contrast, hydroxyapatite precipitation had limited effect on the interstitial fluid pH regulation. ConclusionThis study provides mechanistic insights into the physicochemical processes underlying the known role of bone turnover processes in regulation of body pH homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.