Abstract

The new method for a comprehensive assessment of the strength, durability and material capacity of the critical elements of the main gas pipelines, taking into account the combined impact of factors causing damage (environment, corrosion, random loading, geometry variation, material defects, etc.), which are changing the bearing capacity and material capacity of these structures, is proposed. As the main damaging factor, the process of corrosion fatigue is accepted, the qualitative and quantitative assessment of which are realized by applying a set of equations of comparable fatigue lines obtained by fatigue tests carried out in air and in corrosive environment. By the joint solution of these equations, the functions of the corrosion action coefficients are obtained in a wide range of cyclic strength and durability, which in standard calculation procedures are performed only for cyclic strength and only at the inflection point of the fatigue lines (NG 5  106 cycles).The issues of reducing the material consumption and ensuring the cost-effectiveness of structures, by using relatively cheap materials for pipelines - low-carbon and low-alloy structural steels subjected to surface hardening in stressed sections of pipes (edge welds) in order to significantly increase the physical and mechanical characteristics of the used steel grades are considered. In order to increase the corrosion resistance of these sections, contemporary polymer anticorrosive coatings are used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call