Abstract

Mathematical modeling of the population dynamics is performed for states of a three-level system (atom) with a V-type configuration transforming a light pulse. It is assumed that the excited eigenstates of the atom are degenerate and coupled by coherent interaction, one of the states being radiating (radiative), while the other state is nonradiating (“dark”). The population dynamics of atomic states is described on the basis of numerical solutions of equations for the matrix elements of the density operator. The dependence of the efficiency of population of the atomic dark state from the values of the parameters of an irradiation pulse and from the ratio of the period of population oscillations of excited atomic states (caused by their coherent interaction) to the lifetime of the atomic radiating state is determined. Typical examples of the time dependence of the population of states of the atom considered are presented for the cases of irradiation by a short (as compared to the lifetime of the radiating state) sinusoidal light pulse and by a long rectangular light pulse with the resonance carrier frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.