Abstract

Currently, the pollution problem of coastal sea waters in the resort areas of the Black Sea is becoming increasingly urgent. Thousands of chemicals, industrial and household waste enter the water basins every year, which significantly worsens the state of marine waters. Storm drains are saturated with pollutants at precipitation, washing out various chemical compounds, garbage and transporting them to the sea. In addition, a separate problem is poorly self-cleaning of the Gelendzhik Bay. A complete water change occurs in the period from 1 to 6 days. This paper covers the development, research and numerical implementation of a mathematical model of the pollution transport, including petroleum products, in the Gelendzhik Bay taking into account a number of important hydrodynamic and hydrophysical factors, methods of its numerical implementation, which allow predictive modeling of the pollution spread in shallow water systems in a limited time. A hydrobiological model of a coastal system characterized by significant depth differences has been developed. A three-dimensional mathematical model is designed to research the transformation of the phosphorus, nitrogen and silicon forms in the plankton dynamics problem. It takes into account the convective and diffusive transports, absorption and release of nutrients by phytoplankton, salinity, temperature, oxygen regime, etc. Using a spatial-three-dimensional hydrodynamics model, taking into account the physical properties of water environment of the coastal system, calculation results are used as input data for the development of scenarios for the dynamics of transport processes and the transformation of pollution biogenic elements in the water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call