Abstract

This work reports the kinetic modeling of the pervaporative separation of methanol−MTBE mixtures. Using a commercial membrane, Pervap 2256, that presented high selectivity toward methanol permeation, the influence of the operating variables feed composition in the range 1−20 wt % MeOH, feed temperature between 30 and 50 °C, and permeate pressure between 1 and 20 mmHg on the pervaporation flux was experimentally analyzed in a laboratory setup working under pseudo-steady-state conditions. A mathematical model based on the generalized Fick's law and the assumption that transport through the membrane is the rate-limiting step was developed in order to describe the PV flux of both components. The prediction of the flux of methanol needed of a concentration-dependent diffusion coefficient, whereas a simple model with concentration-independent diffusivity was sufficient for the description of the MTBE flux. Finally, the influence of the temperature on the partial fluxes was described through an Arrhenius-type ex...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.