Abstract
In recent years, various wood modification technologies have been commercialized as alternatives to the traditional chemical treatments for wood preservation. The high temperature heat treatment of wood is one of these commercially viable and environmentally friendly alternative wood modification technologies. During this treatment, wood is heated to temperatures above 200°C by contacting it with hot gas. The chemical structure of wood changes leading to increased dimensional stability and resistance to microorganisms. Wood darkens making it aesthetically more attractive. However, it loses some of its elasticity. Therefore, the high temperature heat treatment has to be optimized for each species and each technology. The mathematical modeling is an important tool for optimization. It can also be used as a powerful tool for furnace modification and design. A reliable and predictive model was developed to simulate numerically the heat treatment process. Heat treatment experiments were carried out in the prototype furnace of the University of Quebec at Chicoutimi. The model was validated by comparing the predictions with the experimental data. In this paper, the results of the model applied to birch heat treatment are presented. The model predictions are in good agreement with the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.