Abstract

State-of-the-art theoretical and numerical techniques required to simulate the head-disk interface (HDI) of future magnetic storage devices is presented. The severity of operating conditions (i.e., attempts to achieve flying heights as low as 40 nm) pose several challenges. Large transient pressure gradients can be established within air bearing leading to numerical oscillations as well as to increased program execution times. Enhanced gaseous rarefaction effects must also be incorporated into the analysis. In the present study, accurate nonoscillatory air bearing pressure distributions were obtained using a high resolution finite element algorithm to solve the generalized Reynolds equation. Higher order gaseous rarefaction effects are incorporated into generalized Reynolds equations using the total mass flow rate coefficient predicted from the linearized Boltzmann equation. The form of the generalized Reynolds equation that is presented in this paper is an improved version of the continued fraction approximation previously proposed by Crone et al.1 A simple scaling analysis, which is based upon the results of the linearized Boltzmann equation, will also be presented to study the effect of slider miniaturization, as well as to obtain a novel interpretation of accelerated wear and accelerated flyability test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.