Abstract

In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call