Abstract

The paper presents a mathematical model of the thermal load on the aquatic environment under various operational capacities of thermal power plant. It is solved by the Navier–Stokes and temperature equations for an incompressible fluid in a stratified medium based on the splitting method by physical parameters which approximated by the finite volume method. The numerical solution of the equation system is divided into four stages. At the first step it is assumed that the momentum transfer carried out only by convection and diffusion. Intermediate velocity field is solved by five-step Runge–Kutta method. At the second stage, the pressure field is solved by the found intermediate velocity field. Poisson equation for the pressure field is solved by Jacobi method. The third step assumes that the transfer is carried out only by pressure gradient. The fourth step of the temperature equation is also solved as motion equations, with five-step Runge–Kutta method. The algorithm is parallelized on high-performance computer. The obtained numerical results of three-dimensional stratified turbulent flow were compared with experimental data. What revealed qualitatively and quantitatively approximately the basic laws of hydrothermal processes occurring in the reservoir-cooler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.