Abstract

A mathematical model for simulation of simultaneous heat and mass transport was developed to describe the drying kinetics during finish drying of trellis-dried sultanas. In this model, the governing partial differential equations for heat and mass transfer for a solid spherical body were numerically solved using a finite difference technique. In addition, a kinetic model was coupled to the heat and mass transfer calculations to simultaneously predict the evolution of product color during the drying process. This allows predictions of moisture content, temperature, and color profiles of the product in a space–time domain during the drying process as a function of various operating conditions. Predictions compared well with the experimental values, implying that the proposed numerical model can be used with confidence for the simulation of the important transport phenomena in optimizing the design and operation of a drying system for sultanas that maximizes the retention of the desired product color. The work has demonstrated the importance of establishing optimal and closely controlled drying conditions because significant effects of the key operational parameters on drying kinetics and the associated changes of product color were found. The modeling approach proposed here can be extended to other products and for incorporation of other product quality indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.