Abstract

Some available mathematical models for the argon-oxygen decarburization (AOD) stainless steelmaking process have been reviewed. The actual situations of the AOD process, including the competitive oxidation of the elements dissolved in the molten steel and the changes in the bath composition, as well as the nonisothermal nature of the process, have been analyzed. A new mathematical model for the AOD refining process of stainless steel has been proposed and developed. The model is based on the assumption that the blown oxygen oxidizes C, Cr, Si, and Mn in the steel and Fe as a matrix, but the FeO formed is also an oxidant of C, Cr, Si, and Mn in the steel. All the possible oxidation-reduction reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. It is also assumed that at high carbon levels, the oxidation rates of elements are primarily related to the supplied oxygen rate, and at low carbon levels, the rate of decarburization is mainly determined by the mass transfer of carbon from the molten steel bulk to the reaction interfaces. It is further assumed that the nonreacting oxygen blown into the bath does not accumulate in the liquid steel and will escape from the bath into the exhaust gas. The model performs the rate calculations of the refining process and the mass and heat balances of the system. Also, the effects of the operating factors, including adding the slag materials, crop ends, and scrap, and alloy agents; the nonisothermal conditions; the changes in the amounts of metal and slag during the refining; and other factors have all been taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.