Abstract

We discuss the results of numerical modeling of forming optical-terahertz bullets at the process of optical rectification. Our calculations are based on a generalization of the well-known Yajima - Oikawa system, which describes the nonlinear interaction of short (optical) and long (terahertz) waves. The generalization relates to situations when the optical component is close to a few-cycle pulse. We study the influence of the number of optical pulse oscillations on the formation of an optical-terahertz bullet. We develop original nonlinear conservative pseudo-spectral difference scheme approximating the generalization of the Yajima-Oikawa system. It is realized with the help of FFT algorithm. Mathematical modeling demonstrates scheme efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.