Abstract

G-protein-activated signaling pathways are capable of adapting to a persistent external stimulus. Desensitization is thought to occur at the receptor level as well as through negative feedback by a family of proteins called regulators of G-protein signaling (RGS). The pheromone response pathway in yeast is a typical example of such a system, and the relative simplicity of this pathway makes it an attractive system in investigating the regulatory role of RGS proteins. Two studies have used computational modeling to gain insight into how this pathway is regulated (Hao et al., 2003; Yi et al., 2003). This article provides an introduction to computational analysis of signaling pathways by developing a mathematical model of the pheromone response pathway that synthesizes the results of these two investigations. Our model qualitatively captures many features of the pathway and suggests an additional mechanism for pathway inactivation. It also illustrates that a complete understanding of signaling pathways requires an investigation of their time-dependent behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.