Abstract

A system of equations describing time changes in the matrix elements of the density operator of a seven-level model of a molecule interacting with a light pulse taking into account spontaneous (including collective) decays of molecule excited states is suggested. Model parameters were selected to allow us to perform modeling of the photoisomerization of a molecule with two isomeric states with different stable proton positions on an intramolecular H-bond by numerically solving the suggested system of equations for density operator matrix elements. An analysis of the characteristic time dependences of the population of states of the model under consideration showed that proton phototransfer in the collective decay of various isomeric states of a molecule in an excited electronic state can be one of effective mechanisms of the photoisomerization of molecules whose structure is described by the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.