Abstract
Oscillogram modeling is a powerful tool for understanding and advancing popular oscillometric blood pressure (BP) measurement. A reduced oscillogram model relating cuff pressure oscillation amplitude ( ∆O) to external cuff pressure of the artery ( Pe) is: [Formula: see text], where g(P) is the arterial compliance versus transmural pressure ( P) curve, Ps and Pd are systolic and diastolic BP, and k is the reciprocal of the cuff compliance. The objective was to determine an optimal functional form for the arterial compliance curve. Eight prospective, three-parameter functions of the brachial artery compliance curve were compared. The study data included oscillometric arm cuff pressure waveforms and invasive brachial BP from 122 patients covering a 20-120 mmHg pulse pressure range. The oscillogram measurements were constructed from the cuff pressure waveforms. Reduced oscillogram models, inputted with measured systolic and diastolic BP and each parametric brachial artery compliance curve function, were optimally fitted to the oscillogram measurements in the least squares sense. An exponential-linear function yielded as good or better model fits compared to the other functions, with errors of 7.9±0.3 and 5.1±0.2% for tail-trimmed and lower half-trimmed oscillogram measurements. Importantly, this function was also the most tractable mathematically. A three-parameter exponential-linear function is an optimal form for the arterial compliance curve in the reduced oscillogram model and may thus serve as the standard function for this model henceforth. The complete, reduced oscillogram model determined herein can potentially improve oscillometric BP measurement accuracy while advancing foundational knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.