Abstract

Abstract The objective of the present study was to predict the inactivation trends of acid-adapted foodborne pathogens in tomato juice by ohmic heating through a numerical analysis method. The mathematical model based on finite element method (FEM) was used to simulate the multiphysics phenomena including electric heating, heat transfer, fluid dynamics, and pathogen inactivation. A cold spot was observed in the corner part of the ohmic heating chamber, where some pathogens survived even though all pathogens were inactivated elsewhere. Challenges of this study were how to reflect the increased resistance of pathogen by acid-adaptation. After simulation, we verified that inactivation level of acid-adapted foodborne pathogens by 25 Vrms/cm ohmic heating (1 kHz), predicted with the developed mathematical model, had no significant differences with experimental results (p > 0.05). Therefore, the mathematical approaches described in the present study will help juice processors determine the processing conditions necessary to ensure microbial safety at the cold point of a rectangular type batch ohmic heater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call