Abstract
To align with daily environmental changes, most physiological processes in mammals exhibit a time-of-day rhythmicity. This circadian control of physiology is intrinsically driven by a cell-autonomous clock gene network present in almost all cells of the body that drives rhythmic expression of genes that regulate numerous molecular and cellular processes. Accordingly, many aspects of pharmacology and toxicology also oscillate in a time-of-day manner giving rise to diverse effects on pharmacokinetics and pharmacodynamics. Genome-wide studies and mathematical modeling are available tools that have significantly improved our understanding of these nonlinear aspects of physiology and therapeutics. In this manuscript current literature and our prior work on the model-based approaches that have been used to explore circadian genomic systems of mammals are reviewed. Such basic understanding and having an integrative approach may provide new strategies for chronotherapeutic drug treatments and yield new insights for the restoration of the circadian system when altered by diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.