Abstract

The heat transfer in mold copper plays an important role in the solidification behavior of steel. In this study, a three-dimensional heat transfer model coupled with flow behavior of the cooling water was established to analyze the temperature field of the copper and water slots. And this model was verified by the measured temperature rise of cooling water at the inlet and outlet of slots. The advantages of this model were obtained by comparing it with Dittus–Boelter model and the Sleicher–Rouse model, which did not consider the flow of water. The results show that the Dittus–Boelter model has the highest temperature and that the coupled model has the lowest temperature. Moreover, the coupled model includes calculation of the temperature and velocity field of the cooling water inside the slots. This temperature information is very helpful for predicting the water boiling in the slots. In addition, the coupled model shows that the temperature, heat flux, and heat transfer coefficient around the water slot wall are different from the conventional models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.