Abstract

A theoretical analysis was carried out to investigate the characteristics of plasma arc injected transverse to a transverse-alternating magnetic field. Two mathematical models were developed to describe both the oscillating amplitude of the plasma arc root and the heat flux density distribution of plasma arc on the workpiece surface. The characteristic of plasma arc under the external transverse-alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of process parameters, such as working gas flux, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation and heat flux distribution of plasma arc were also analyzed. The analytical results show that it is feasible to adjust the shape and heat flux density of the plasma arc by the transverse- alternating magnetic field, which expands the region of plasma arc thermal treatment and uniforms the heat flux density upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases, and the heat flux density gradient upon the workpiece increases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flux, more arc current, and less standoff cause the oscillating amplitude to decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.