Abstract

This work presents a mathematical model for gas absorption in microporous hollow fiber membrane contactors by using a random distribution of fibers. The chemical absorption of carbon dioxide into aqueous amine solutions and sulfur dioxide into water were simulated by this model. The nonlinear mathematical expressions of the component material balance for the liquid, membrane, and gas were solved simultaneously by using a numerical method. The results from the model were compared with four sets of different experimental data in the literature. In addition, the contactors were modeled based on the assumption of regular arrangement of fibers in the shell side by using Happel's free surface as well as plug flow models. The plug flow model was employed to compare the various available equations in the literature for the shell side mass transfer coefficient. The results indicate that the channeling of gas in the shell side decreases the efficiency of contactor significantly. It was found that the random distribution of fibers is a suitable method to simulate the commercial modules. The results also indicate that, the regular Happel's free surface model and the plug flow model are more suitable for handmade modules. The influence of shell side channeling on the contactor performance were investigated in different fiber packing densities, and in various gas and liquid flow rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call