Abstract

This paper shows a proposition of a set of transport equations and their boundary conditions for solving problems involving flow and heat transfer in a moving bed equipment. The reactor is seen as a porous matrix in which the solid phase is moving. Additional drag terms appearing the momentum equation are a function of the relative velocity between the fluid and solid phases. Turbulence equations are also influenced by the speed of the solid phase. Results show the decrease for turbulent kinetic energy as the solid speed approaches the fluid speed. Heat transfer rate between phases is also damped as the solid speed increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.