Abstract

Abstract A mathematical model is discussed in terms of moisture transfer during the drying process of Masson pine (Pinus massoniana) lumber in industrial practice. The model was validated by comparing the simulated result of moisture distribution with experimental data. In the model, the wood drying process was divided into two phases. The first one dealt with processes above fiber saturation point (FSP), that was driven by capillary flux of free water and conductive flux of vapor, and the second one dealt with those of below FSP, which was driven by diffusive flux of bound water and vapor. Moisture content distribution (MCD) inside wood is simulated by solving a parabolic partial differential equation under Dirichlet boundary conditions. The moisture content profile (MCP) was asymmetrical in experiments, and the simulation result agreed well with the experiments. An easy empirical formulation was also proposed to calculate real wood permeability, as it showed general characteristics of liquid and vapor permeability. This permeability model is verified as the cause of asymmetrical MCP in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.