Abstract

In this paper the properties of solutions of nonlinear parabolic equation not in divergence form are studied. Depending on values of the numerical parameters and the initial value, the existence of the global solutions of the Cauchy problem is proved. Constructed asymptotic representation of self-similar solutions of nonlinear parabolic equation not in divergence form, depending on the value in the equation of the numerical parameters necessary and sufficient signs of their existence. The compactly supported solution of the Cauchy problem for a cross-diffusion parabolic equation not in divergence form with a source and a variable density is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.