Abstract

In this paper, the mathematical modeling of the novel corona virus (COVID-19) is considered. A brief relationship between the unknown hosts and bats is described. Then the interaction among the seafood market and peoples is studied. After that, the proposed model is reduced by assuming that the seafood market has an adequate source of infection that is capable of spreading infection among the people. The reproductive number is calculated and it is proved that the proposed model is locally asymptotically stable when the reproductive number is less than unity. Then, the stability results of the endemic equilibria are also discussed. To understand the complex dynamical behavior, fractal-fractional derivative is used. Therefore, the proposed model is then converted to fractal-fractional order model in Atangana-Baleanu (AB) derivative and solved numerically by using two different techniques. For numerical simulation Adam-Bash Forth method based on piece-wise Lagrangian interpolation is used. The infection cases for Jan-21, 2020, till Jan-28, 2020 are considered. Then graphical consequences are compared with real reported data of Wuhan city to demonstrate the efficiency of the method proposed by us.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.